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Abstract. A clutter (V; E) packs if the smallest number of vertices needed to intersect

all the edges (i.e. a minumum transversal) is equal to the maximum number of pairwise

disjoint edges (i.e. a maximum matching). This terminology is due to Seymour 1977. A

clutter is minimally nonpacking if it does not pack but all its minors pack. An m� n 0,1

matrix is minimally nonpacking if it is the edge-vertex incidence matrix of a minimally

nonpacking clutter. Minimally nonpacking matrices can be viewed as the counterpart for

the set covering problem of minimally imperfect matrices for the set packing problem.

This paper proves several properties of minimally nonpacking clutters and matrices.

1. Introduction

A clutter C is a pair
�
V (C); E(C)

�
, where V (C) is a �nite set and E(C) = fS1; : : : ;

Smg is a family of subsets of V (C) with the property that Si � Sj implies Si = Sj . The

elements of V (C) are the vertices of C and those of E(C) are the edges . A transversal of

C is a subset of vertices that intersects all the edges. A transversal is minimal if none of

its proper subset is a transversal. A transversal is minimum if no transversal has smaller

cardinality. Let �(C) denote the cardinality of a minimum transversal. A clutter C packs if

there exist �(C) pairwise disjoint edges.

For j 2 V (C), the contraction C=j and deletion C n j are clutters de�ned as follows: both

have V (C)�fjg as vertex set, E(C=j) is the set of minimal elements of fS�fjg : S 2 E(C)g

and E(C n j) = fS : j 62 S 2 E(C)g. Contractions and deletions of distinct vertices can be

performed sequentially, and it is well known that the result does not depend on the order.
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A clutter D obtained from C by deleting Id � V (C) and contracting Ic � V (C), where

Ic \ Id = ; and Ic [ Id 6= ;, is a minor of C and is denoted by C n Id=Ic.

Note that the property that C packs is not closed under minor taking. For example, con-

sider the graph with four vertices V = f1; 2; 3; 4g and four edges E = ff1; 2g; f1; 3g; f1; 4g; f2; 3gg.

This clutter packs: indeed, f1; 2g is a minimum transversal and ff1; 4g; f2; 3gg is a match-

ing of cardinality two. However, the clutter obtained by deleting vertex 4 is a graph with

three vertices and the three edges ff1; 2g; f1; 3g; f2; 3gg. This clutter does not pack: min-

imum transversals have cardinality two while maximum matchings have cardinality one.

This observation leads us to consider the following property: We say that a clutter C has

the packing property if it packs and all its minors pack. A clutter is minimally non packing

(mnp) if it does not pack but all its minors do. In this paper, we study mnp clutters.

These concepts can be described equivalently in terms of 0,1 matrices. An m � n 0,1

matrix A packs if the minimum number of columns needed to cover all the rows equals the

maximum number of nonoverlapping rows, i.e.

min
�
e x : Ax � e; x 2 f0; 1gn

	

= max
�
y e : yA � e; y 2 f0; 1gm

	
;

(1.1)

where e denotes a vector of appropriate dimension all of whose components are equal to

1. Obviously, dominating rows play no role in this de�nition (row Ai: dominates row Ak:,

k 6= i, if Aij � Akj for all j), so we assume without loss of generality that A contains

no such row. That is, we assume that A is the edge-vertex incidence matrix of a clutter.

Since the statement \A packs" is invariant upon permutation of rows and permutation

of columns, we denote by A(C) any 0,1 matrix that is the edge-vertex incidence matrix

of clutter C. Observe that contracting j 2 V (C) corresponds to setting xj = 0 in the

set covering constraints A(C)x � e (since, in A(C=j), column j is removed as well as the

resulting dominating rows), and deleting j corresponds to setting xj = 1 (since, in A(C n j),

column j is removed as well as all rows with a 1 in column j). The packing property for A

requires that equation (1.1) holds for the matrix A itself and all its minors. This concept

is dual to the concept of perfection (Berge [1]). Indeed, one can de�ne a perfect 0,1 matrix

as follows. A 0,1 matrix is perfect if all its column submatrices A satisfy the equation

max
�
e x : Ax � e; x 2 f0; 1gn

	

= min
�
y e : yA � e; y 2 f0; 1gm

	
:
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This de�nition involves \column submatrices" instead of \minors" since setting a variable to

0 or 1 in the set packing constraints Ax � e amounts to considering a column submatrix of

A (in the case of setting a variable to 0, this is obvious, and in the case of setting a variable

to 1, the constraints Ax � e may force other variables to 0, so all the corresponding columns

of A are removed). Pursuing the analogy, mnp matrices are to the set covering problem

what minimally imperfect matrices are to the set packing problem.

The 0,1 matrix A is ideal if the polyhedron fx � 0 : Ax � eg is integral (Lehman [9]). If

A is ideal, then so are all its minors [16]. The following result is a consequence of Lehman's

work [10].

Theorem 1.1. If A has the packing property, then A is ideal.

The converse is not true, however. A famous example is the matrix Q6 with 4 rows and

6 columns comprising all 0,1 column vectors with two 0's and two 1's. It is ideal but it does

not pack. This is in contrast to Lov�asz's theorem [11] stating that A is perfect if and only

if the polytope fx � 0 : Ax � eg is integral.

The 0,1 matrix A has the Max-Flow Min-Cut property (or simply MFMC property) if

the linear system Ax � e, x � 0 is totally dual integral (Seymour [16]). Speci�cally, let

�(A;w) = min
�
wx : Ax � e; x 2 f0; 1gn

	
;

�(A;w) = max
�
y e : yA � w; y 2 Zm

+

	
:

A has the MFMC property if �(A;w) = �(A;w) for all w 2 Zn
+. Setting wj = 0 corresponds

to deleting column j and setting wj = +1 to contracting j. So, if A has the MFMC

property, then A has the packing property. Conforti and Cornu�ejols [3] conjecture that the

converse is also true.

Conjecture 1.2. A clutter has the packing property if and only if it has the MFMC prop-

erty.

This conjecture for the packing property is the analog of the following version of Lov�asz's

theorem [11]: A 0; 1 matrix A is perfect if and only if the linear system Ax � e; x � 0 is

totally dual integral.

In Section 2, we show that this conjecture holds for diadic clutters. A clutter is diadic

if its edges intersect its minimal transversals in at most two vertices (Ding [6]). In fact, we

show the stronger result:
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Theorem 1.3. A diadic clutter is ideal if and only if it has the MFMC property.

A clutter is said to be minimally non ideal (mni) if it is not ideal but all its minors

are ideal. Theorem 1.1 implies that all minors of an mnp clutter are ideal. Therefore mnp

clutters fall into two distinct classes, namely:

Remark 1.4. A minimally non packing clutter is either ideal or mni.

Sections 3 and 4 deal with ideal mnp clutters. Seymour [16] showed that Q6 is the only

ideal mnp clutter which is binary (a clutter is binary if its edges have an odd intersection

with its minimal transversals). Aside from Q6, only one ideal mnp clutter was known prior

to this work, due to Schrijver [14]. We construct an in�nite family of such mnp clutters

in Section 4. The clutter Q6, Schrijver's example and those in our in�nite class all satisfy

�(C) = 2. We prove in Section 3 that all ideal mnp clutters with �(C) = 2 share strong

structural properties with Q6.

A clutter C has the Q6 property if A(C) has four rows such that every column of A(C)

restricted to this set of rows contains two 0's and two 1's and, furthermore, each of the six

such possible 0,1 vectors occurs at least once.

Theorem 1.5. Every ideal mnp clutter C with �(C) = 2 has the Q6 property.

Our motivation for studying the Q6 property was an attempt to characterize and, if possible,

to enumerate all ideal mnp clutters. Section 4 shows that there is a rich family of ideal mnp

clutters C with �(C) = 2. These clutters are best described in terms of the Q6 property,

which they all share by Theorem 1.5. We make the following conjecture and we prove later

in this section that it implies Conjecture 1.2.

Conjecture 1.6. If C is an ideal mnp clutter, then �(C) = 2.

The blocker b(C) of a clutter C is the clutter with V (C) as vertex set and the minimal

transversals of C as edge set. For Id; Ic � V (C) with Id \ Ic = ;, it is well known and easy

to derive that b(C n Id=Ic) = b(C)=Id n Ic.

Section 5 studies minimally non ideal mnp clutters. The clutter Jt, for t � 2 integer,

is given by V (Jt) = f0; : : : ; tg and E(Jt) =
�
f1; : : : ; tg;f0; 1g; f0; 2g; : : : ;f0; tg

	
. Given a

mni matrix A, let �x be any vertex of fx � 0 : Ax � eg with fractional components. A

maximal row submatrix �A of A for which �A�x = e is called a core of A. The next result is

due to Lehman [10] (see also Padberg [13], Seymour [17]).
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Theorem 1.7. Let A be an m� n mni matrix, B = b(A), r = �(B) and s = �(A). Then

(i) A (resp. B) has a unique core �A (resp. �B).

(ii) �A; �B are square matrices.

Moreover, either A = A(Jt), t � 2, or the rows and columns of �A can be permuted so that

(iii) �A �BT = J + (rs� n)I, with rs � n+ 1.

Here J denotes a square matrix �lled with ones and I the identity matrix. Only three

cores with rs = n + 2 are known and none with rs � n + 3. Nevertheless Cornu�ejols

and Novick [5] have constructed more than one thousand mni matrices from a single core

with rs = n + 2. An odd hole C2
k is a clutter with k � 3 odd, V (C2

k) = f1; : : :kg and

E(C2
k) =

�
f1; 2g; f2; 3g; : : : ; fk � 1; kg; fk; 1g

	
. Odd holes and their blockers are mni with

rs = n + 1 and Luetolf and Margot [12] give dozens of additional examples of cores with

rs = n+ 1 and n � 17. We prove the following theorem.

Theorem 1.8. Let A 6= A(Jt) be an m � n mni matrix. If A is minimally non packing,

then rs = n+ 1.

We conjecture that the condition rs = n+ 1 is also su�cient.

Conjecture 1.9. Let A 6= A(Jt) be an m � n mni matrix. Then A is minimally non

packing if and only if rs = n+ 1.

Using a computer program, we were able to verify this conjecture for all known mni

matrices with n � 14.

A clutter is minimally non MFMC if it does not have the MFMC property but all its

minors do. Conjecture 1.2 states that these are exactly the mnp clutters. Although we

cannot prove this conjecture, the next proposition shows that a tight link exists between

minimally non MFMC and mnp clutters. The clutter D obtained by replicating element

j 2 V (C) of C is de�ned as follows: V (D) = V (C)[ fj0g where j0 62 V (C), and

E(D) = E(C)[ fS � fjg [ fj0g : j 2 S 2 E(C)g:

Element j0 is called a replicate of j. Let ej denote the j
th unit vector.

Remark 1.10. D packs if and only if �(C; e+ ej) = �(C; e+ ej).
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Remark 1.11. D is ideal if and only if C is: As C is a deletion minor of D, if D is ideal

then C is ideal [16]. Conversely, if D is not ideal, there exists a fractional extreme point z of

the polyhedron PD = fx � 0 : A(D)x � eg. Note that zj = zj0 , otherwise the larger of the

two can be reduced or incremented while retaining feasibility, a contradiction with z being

an extreme point. Let �z be the vector obtained by removing component zj0 from z. If C

is ideal, then �z is a convex combination of integer extreme points of fx � 0 : A(C)x � eg.

This convex combination extend to a convex combination of points in PD generating z, a

contradiction.

Proposition 1.12. Let C be a minimally non MFMC clutter. We can construct a mini-

mally non packing clutter D by replicating elements of V (C).

Proof. Let w 2 Zn
+ be chosen such that �(C; w) > �(C; w) and �(C; w0) = �(C; w0) for all

w0 2 Zn
+ with w0 � w and w0

j < wj for at least one j. Note that wj > 0 for all j, since

otherwise some deletion minor of C does not have the MFMC property. Construct D by

replicating wj�1 times every element j 2 V (C). We show that D is minimally non packing.

By Remark 1.10, D does not pack. Let D0 = DnId=Ic be any minor of D. We claim that D0

packs. If j or one of its replicates j0 is in Ic then we can assume that j and all its replicates

are in Ic, since each subset D 2 E(D) with j0 2 D contains a set B 2 E(D=j), i.e. D is a

dominating subset in D=j. Then D0 is a replication of a minor C0 of C=j. Since C0 has the

MFMC property, D0 packs by Remark 1.10. Thus we can assume Ic = ;. By the choice

of w and Remark 1.10, if Id 6= ; then D0 packs. This proves the claim and therefore the

proposition.

Proposition 1.12 can be used to show that, if every ideal mnp clutter C satis�es �(C) = 2,

then the packing property and the MFMC property are the same.

Proposition 1.13. Conjecture 1.6 implies Conjecture 1.2.

Proof. Suppose there is a minimally non MFMC clutter C that has the packing property.

By Theorem 1.1, C is ideal. By Proposition 1.12, there is a mnp clutter D with a replicated

element j. Furthermore, by remark 1.11, D is ideal. Using Conjecture 1.6, 2 = �(D) �

�(D=j). Since D=j packs, there are sets S1; S2 2 E(D) with S1 \ S2 = fjg. Because j is

replicated in D, we have a set S0
1 = S1[fj0g�fjg. Note that j0 62 S2. But then S0

1\S2 = ;,

hence D packs, a contradiction.
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In Section 6, we introduce a new class of clutters called weakly binary. They can be

viewed as a generalization of binary and of balanced clutters. (A 0,1 matrix is balanced if

it does not have A(C2
k) as a submatrix, k � 3 odd, where as above C2

k denotes an odd hole.

See [4] for a survey of balanced matrices). We say that a clutter C has an odd hole C2
k if

A(C2
k) is a submatrix of A(C). An odd hole C2

k of C is said to have a non intersecting set if

9S 2 E(C) such that S \ V (C2
k) = ;. A clutter is weakly binary if, in C and all its minors,

all odd holes have non intersecting sets. Balanced clutters are trivially weakly binary and

we show in Section 6 that binary clutters are also weakly binary.

Theorem 1.14. Let C be weakly binary and minimally non MFMC. Then C is ideal.

Note that, when C is binary, this theorem is an easy consequence of Seymour's theorem

saying that a binary clutter has the MFMC property if and only if it does not have Q6

as a minor [16]. Indeed, Seymour's theorem implies that the only binary clutter that is

minimally non MFMC is Q6, which is ideal. Observe also that Theorem 1.14 together

with Conjecture 1.6, Proposition 1.13, and Theorem 1.5, would imply that a weakly binary

clutter has the MFMC property if and only if it does not contain a minor with the Q6

property.

2. General properties of ideal minimally non packing clutters

Let C be ideal and let ~C be the clutter with same vertex set as C and edge set containing

those edges of C that intersect exactly once each minimum transversal of C. In other words:

E( ~C) = fS 2 E(C) : jT \ Sj = 1 for every T 2 E
�
b(C)

�
with jT j = �(C)g. Consider

�(C) = minfex : A(C)x � e; x � 0g(2.2)

= maxfye : yA(C) � e; y � 0g:(2.3)

Let T be any transversal with jT j = �(C) and let x be its incidence vector. Since C is ideal,

x is an optimal solution to (2.2). Thus if Ai:x > 1, then by complementary slackness yi = 0

for all optimal solutions to (2.3). Conversely if Ai:x = 1 for all optimal solutions x to (2.2),

then, by [15] p.95 (36), there is an optimal solution y to (2.3) with yi > 0. It follows,

Remark 2.1. A( ~C) contains exactly the rows A(C)i: for which there is an optimum solution

y to (2.3) with yi > 0.

We start with a collection of properties that an ideal mnp clutter satis�es.
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Proposition 2.2. Let C be an ideal minimally non packing clutter. Then

(i) 8i 2 V (C); �(C n i) = �(C)� 1.

(ii) yA(C) = e for all optimum solutions to maxfye : yA(C) � e; y � 0g.

(iii) �(C) = �( ~C).

(iv) 8S 2 E(C); 9T 2 E
�
b(C)

�
such that jT � Sj � �(C)� 2.

(v) 8S 2 E( ~C); 9T 2 E
�
b(C)

�
with jT j > �(C) such that jT � Sj � �(C)� 2.

(vi) If two columns ci; cj of A( ~C) satisfy ci � cj, then ci = cj.

(vii) 8i 2 V (C); �(C=i) = �(C).

Proof.

(i): By de�nition of deletion, �(C n i) � �(C) � 1. Since C is mnp, there is a family

F = fS1; : : : ; S�(Cni)g of pairwise disjoint edges of E(C n i). Since F � E(C) and C

does not pack, jFj = �(C n i) < �(C). The result follows.

(ii): Follows from (i) by complementary slackness.

(iii): The equality �(C) = �( ~C) follows from

�(C) = minfex : A(C)x � e; x � 0g = maxfye : yA(C) � e; y � 0g

= maxf~ye : ~yA( ~C) � e; ~y � 0g = minfex : A( ~C)x � e; x � 0g

� �( ~C) � �(C):

This �rst equality follows by the fact that C is ideal, the second and fourth equality

by duality and the third from the fact that, by Remark 2.1, yi = 0 for all rows of A(C)

which are not rows of A( ~C).

(iv): If 8T 2 E
�
b(C)

�
; jT � Sj � �(C)� 1, then �(C n S) � �(C)� 1. C is mnp, therefore

there is a family F = fS1; : : : ; S�(C)�1g � E(C n S) of pairwise disjoint edges. Hence,

fSg [ F is a family of �(C) pairwise disjoint edges of C, i.e. C packs, a contradiction.

(v): Let S 2 E( ~C) and T 2 E
�
b(C)

�
with jT j = �(C). Then by de�nition of ~C, jT �Sj =

jT j � jS \ T j = �(C)� 1 and the result follows by (iv).

(vi): Assume that ci � cj and cik < cj
k
. By Remark 2.1, there is an optimal solution y

with yk > 0 to maxfye : yA(C) � e; y � 0g: Moreover, y` = 0 for all rows l of A(C)

which are not rows of A( ~C). It follows that yA(C):i < yA(C):j, a contradiction with

(ii).
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(vii): By (vi), 9S 2 E( ~C) with i 2 S. Suppose �(C=i) > �(C). We will show that

S = fig, a contradiction to (iv). Consider any j 2 V (C)� fig. By (i) 9Sj 2 E
�
b(C)

�

with jSj j = �(C) and j 2 Sj . Since �(C=i) > �(C), we know i 2 Sj . But by de�nition

of ~C, we have 1 = jS \ Sj j = jfigj, hence j 62 S.

Proposition 2.2 is su�cient to prove Theorem 1.3 stating that a diadic clutter is ideal if

and only if it has the MFMC property.

Proof of Theorem 1.3: Since clutters with the MFMC property are ideal, it is su�cient to

show that all ideal diadic clutters have the MFMC property. By contradiction, let C be an

ideal diadic clutter which is minimally non MFMC. By Proposition 1.12, there is a mnp

clutter D obtained by replicating elements of C. Note that the property of being diadic is

closed under replication thus D is diadic. By Proposition 2.2 (v), 8S 2 E( ~D); 9T 2 E
�
b(D)

�

with jT j > �(D) such that jT j � jS \ T j � �(D)� 2, a contradiction to jS \ T j � 2.

3. The Q6 property

We say that a clutter has the Q6 property , if V (C) can be partitioned into nonempty

sets I1; : : : ; I6, such that there are edges S1; : : : ; S4 in C of the form:

S1 = I1 [ I3 [ I5; S2 = I1 [ I4 [ I6;

S3 = I2 [ I4 [ I5; S4 = I2 [ I3 [ I6:

Note that Q6 trivially has the Q6 property. Now we prove Theorem 1.5 stating that, if C is

an ideal mnp clutter with �(C) = 2, then C has the Q6 property.

Proof of Theorem 1.5: Let A denote A(C) and ~A denote A( ~C). Since �(C) = 2; 9k; l 2 V (C)

such that fk; lg 2 E
�
b(C)

�
. Let K = fi : ~A:i = ~A:kg and L = fi : ~A:i = ~A:lg. Observe that,

by de�nition of ~A, we have ~A:k + ~A:l = e. We claim that

�(C nK=L) > 1:(3.4)

Assume that the claim is false, i.e. there exists a transversal S of C with jS �Kj � 1

and S \ L = ;. Trivially, S is a transversal of ~C. By Proposition 2.2 (iii), we have

�( ~C) = �(C) = 2. Since jS � Kj � �( ~C n K) = �( ~C n i) � 1 for any i 2 K, we have that

S �K = ftg for some t 2 V (C)� (K [ L). Moreover, ~A:t � ~A:l. By Proposition 2.2 (vi),

this inequality cannot be strict, and thus ~A:t = ~A:l. This implies t 2 L, a contradiction.
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Since C nK=L packs, there exist S1; S2 2 E(C) such that:

(S1 [ S2) \K = ; and (S1 \ S2) \
�
V (C)� (K [ L)

�
= ;:(3.5)

By symmetry, we must also have sets S3; S4 2 E(C) such that

(S3 [ S4) \ L = ; and (S3 \ S4) \
�
V (C)� (K [ L)

�
= ;:(3.6)

Without loss of generality, let us assume that rowsA1:; : : : ; A4: correspond to edges S1; : : : ; S4.

Let us call H the submatrix formed by these four rows and let �y = 1
2(e1+ e2+ e3+ e4). By

(3.5) and (3.6) we have

�yA =
1

2
eH =

1

2
(A1: +A2: +A3: +A4:) � e:(3.7)

Since �ye = 2, �y is an optimum solution to maxfye : yA � e; y � 0g. By Proposition 2.2 (ii)

we get:

1

2
eH = �yA = e:(3.8)

For every unordered pair (k; l) with k; l 2 f1; : : : ; 4g and k 6= l, we associate an index r(k; l)

as follows: r(1; 2) = 1; r(3; 4) = 2; r(1; 4) = 3; r(2; 3) = 4; r(1; 3) = 5; r(2; 4) = 6. Also

let

Ir(k;l) = fi 2 V (C) : i 2 Sk \ Slg

Note that (3.8) implies that every i 2 V (C) belongs to exactly two of S1; : : : ; S4. It follows

that I1; : : : ; I6 are all pairwise disjoint and that I1 [ : : : I6 = V (C). Finally, since none

of S1 to S4 are pairwise disjoint (otherwise C would pack), we have that Ir(k;l) are all

nonempty.

4. New Families

In this section, we construct ideal minimally non packing clutters C with �(C) = 2.

By Theorem 1.5, these clutters have the Q6 property. Thus V (C) can be partitioned into

I1; : : : ; I6 and there exist edges S1; : : : ; S4 in C, as de�ned in Section 3. Without loss of

generality we can reorder the vertices in V (C) so that elements in Ik preceed elements in Ip

when k < p.

Given a set P of p elements, let Hp denote the
�
(2p � 1) � p

�
matrix whose rows are

the characteristic vectors of the nonempty subsets of P , and let H�
p be its complement, i.e.

Hp +H�
p = J .
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For each r; t � 1 let jI1j = jI2j = r; jI3j = jI4j = t and jI5j = jI6j = 1. We call Qr;t the

clutter corresponding to the matrix

A(Qr;t) =

I1 I2 I3 I4 I5 I62
64
Hr H�

r J 0 1 0
H�

r Hr 0 J 1 0
J 0 H�

t Ht 0 1
0 J Ht H�

t 0 1

3
75

where J denotes a matrix �lled with ones. The rows are partitioned into four sets that we

denote respectively by T (3; 5), T (4; 5), T (1; 6), T (2; 6). The indices k; l for a given family

indicate that the set Ik [ Il is contained is every element of the family. Note that the edge

S1 occurs in T (3; 5), S2 in T (1; 6), S3 in T (4; 5) and S4 in T (2; 6).

Since H1 contains only one row, we have Q1;1 = Q6 and Q2;1 is given by

A(Q2;1) =

2
666666664

1 1 0 0 1 0 1 0
1 0 0 1 1 0 1 0
0 1 1 0 1 0 1 0
0 0 1 1 0 1 1 0
1 0 0 1 0 1 1 0
0 1 1 0 0 1 1 0
1 1 0 0 0 1 0 1
0 0 1 1 1 0 0 1

3
777777775

T (3; 5)

T (4; 5)

T (1; 6)
T (2; 6)

The proof of the next proposition is straightforward but tedious (see Guenin [8] for details).

Proposition 4.1. For all r; t � 1, the clutter Qr;t is ideal and minimally non packing.

The clutter D obtained by duplicating element j 2 V (C) of C is de�ned by: V (D) =

V (C) [ fj0g where j0 62 V (C) and E(D) = fS : j 62 S 2 E(C)g [ fS [ fj0g : j 2 S 2 E(C)g.

Let �(k) be the mapping de�ned by: �(1) = 2; �(2) = 1; �(3) = 4; �(4) = 3; �(5) =

6; �(6) = 5.

Suppose that, for k 2 f1; ::; 6g, we have that Ik contains a single element j 2 V (C). Then

j belongs to exactly two of S1; : : : ; S4. These two edges are of the form fjg [ Ir [ It and

fjg [ I�(r) [ I�(t). We can construct a new clutter C 
 j by duplicating element j in C and

including in E(C 
 j) the edges:

fjg [ I�(j) [ Ir [ It;

fj0g [ I�(j) [ I�(r) [ I�(t):
(4.9)

Since the 
 construction is commutative we denote by C 
 fk1; : : : ; ksg the clutter (C 


k1) : : :
 ks. For Q6, we have I1 = f1g = S1 \ S2 and f1g [ I�(1) [ I3 [ I5 = f1; 2; 3; 5g and
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�nally f10g [ I�(1) [ I�(3) [ I�(5) = f10; 2; 4; 6g. Thus

A(Q6 
 1) =

2
66664

1 1 0 1 0 1 0
1 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 1 1 0 0 1
1 0 1 1 0 1 0
0 1 1 0 1 0 1

3
77775

Again, we refer the reader to Guenin's dissertation [8] for a proof of the next result.

Proposition 4.2. Any clutter obtained from Q6 and the 
 construction is ideal and min-

imally non packing.

The clutter Q6
f1; 3; 5g was found by Schrijver [14] as a counterexample to a conjecture

of Edmonds and Giles on dijoins. Prior to this work, Q6 and Q6 
 f1; 3; 5g were the only

known ideal mnp clutters. Eleven clutters can be obtained using Proposition 4.2. There

are also examples that do not �t any of the above constructions, as shown by the following

ideal mnp clutter.

A(C) =

2
666666664

1 1 0 0 1 0 1 0
1 1 0 0 0 1 0 1
0 0 1 1 1 0 0 1
0 0 1 1 0 1 1 0
1 0 1 1 1 0 1 0
0 1 1 0 0 1 0 1
0 1 1 0 1 0 0 1
1 1 0 1 0 1 1 0

3
777777775

5. Non ideal minimally non packing clutters

As mentioned in Remark 1.4, a non ideal mnp clutter is always mni. The following is a

result of Bridges and Ryser [2]:

Theorem 5.1. Let �A, �B be n � n 0,1 matrices satisfying �A �BT = J + dI, where d � 1.

Then

(i) Columns and rows of �A (resp. �B) have exactly r (resp. s) ones with d = rs� n.

(ii) �A �BT = �AT �B

(iii) �AT ( �B:j) = e+ dej

Note that, in Theorem 5.1, Property (iii) follows from the equality �AT �B = J + dI . The

next remark collects known properties of mni matrices [10], [13], [17]. Note that these

properties follow readily from Theorem 1.7 (iii) and Theorem 5.1: Point (i) follow from the
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unicity of the core, and Point (ii) then follows from Point (i). Point (iii) is implied by the

fact that the core is a square matrix. Finally, Point (iv) is nothing more than a rewording

of Theorem 5.1 (iii).

Remark 5.2. Let A be an m� n mni matrix, B = b(A), r = �(B) and s = �(A). Let �A

(resp. �B) be the core of A (resp. B) and let Q(A) denote fx � 0 : Ax � eg.

(i) Q(A) (resp. Q(B)) has a unique fractional extreme point 1
r
e (resp. 1

s
e).

(ii) minfex : Ax � e; x � 0g 62 Z.

(iii) Rows in A (resp. B) that are not rows of �A (resp. �B) have at least r + 1 (resp.

s+ 1) ones.

(iv) �A=j (resp. �B=j) packs with s (resp. r) rows whose indices are given by the

incidence vector of column j of �B (resp. �A).

Given a mni clutter C, we will denote by �C the core of C. Let D = b(C) and let L be the

set corresponding to the ith row of A( �C). By Theorem 1.7 (iii), L intersects all sets of E( �D)

exactly once except for the ith row of A( �D) that is intersected rs � n + 1 � 2 times. This

particular row is called the mate of L.

Now we give a proof of Theorem 1.8 stating that if C 6= Jt is a mni clutter with rs > n+1,

then C is not minimally non packing.

Proof of Theorem 1.8: Let L 2 E( �C) and let U be its mate. We de�ne I = (L � U) [ fig

where i is any element in L \ U .

Claim 1. �( �C n I) � s� 1.

Proof of Claim: By contradiction, suppose there is a set T 2 E
�
b( �C n I)

�
with jT j � s � 2.

Let j be any element in U � fig. By Remark 5.2 (iv), L is among the s disjoint sets of

E( �C=j). Since I � L, there are s � 1 sets in E( �C n I) that intersect only in column j.

Therefore, jT j � s � 2 implies j 2 T . By symmetry among the members of U � fig, it

follows that U � fig � T . So in particular jT j � s � 1, a contradiction. 3

Suppose C n I packs. Then, since �(C n I) � �( �C n I), it follows from Claim 1 that there

must be s � 1 disjoint sets fL1; : : : ; Ls�1g in E(C n I).

Claim 2. None of fL1; : : : ; Ls�1g are in E( �C).
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Proof of Claim: By contradiction, suppose that L1 is in E( �C). Let U1 be its mate and

q = rs� n + 1 � 3. We have:

�
�
C n (I [ L1)

�
� jU1 � L1j = jU1j � q = s � q � s� 3

where the �rst inequality follows from the fact that b(C n (I [ L1)) = b(C)=(I [ L1). But

fL2; : : : ; Ls�1g are disjoint sets of E
�
C n (I [ L1)

�
, a contradiction. 3

By Remark 5.2 (iii), all sets in E(C) � E( �C) have cardinality at least r + 1. Moreover

fL1; : : : ; Ls�1g do not intersect I . Therefore we must have:

(r + 1)(s� 1) � n � jI j = rs � q + 1� (r� q + 1) = rs � r

Thus s � 1, a contradiction.

6. Weakly binary clutters

Let us �rst show that binary clutters are weakly binary (see Section 1). Given two sets

S1 and S2, S1�S2 denotes the symmetric di�erence of S1 and S2, i.e. (S1[S2)� (S1\S2).

If the clutter C is binary, then for any k sets S1; : : : ; Sk with k odd, the set S1� : : :�Sk

contains a set of E(C) [16]. Given C that contains an odd hole C2
k , let S1; : : : ; Sk be the

k sets in E(C) corresponding to E(C2
k). If C is binary, then C2

k has a non intersecting set

S � S1� : : :�Sk. Since minors of binary clutters are again binary [16], it follows that

binary clutters are indeed weakly binary. The inclusion is strict however, since P4 de�ned

as V (P4) = f1; 2; 3; 4g and E(P4) =
�
f1; 2g; f2; 3g; f3; 4g

	
is weakly binary but not binary.

In the remainder, we prove Theorem 1.14, stating that if C is weakly binary and minimally

non MFMC, then C is ideal. To prove this result, we need the following theorem. Given a

family of sets H � E(C) we will denote by C �H the clutter de�ned by V (C �H) = V (C)

and E(C �H) = E(C)� E(H).

Theorem 6.1. Let C 6= Jt be a mni clutter with rs = n + 1. Then 8i 2 V (C) 9H � fS 2

E(C) : i 2 Sg such that there is a minor D of C �H with

1. i 2 V (D) and

2. D contains an odd hole C2
k with V (D) = V (C2

k).

To illustrate this theorem, consider b(C2
5). We haveE

�
b(C2

5)
�
=
�
f1; 3; 5g; f1; 2; 4g; f2; 3; 5g;

f1; 3; 4g; f2; 4; 5g
	
. For i = 1, let H =

�
f1; 3; 4g

	
. Then E

�
[b(C2

5) �H ]=f3; 4g
�
=
�
f1; 2g;
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f2; 5g; f1; 5g
	
. We will need the following de�nition for the proof. A clutter C is bicolorable

if there is a partition of V (C) into V1 and V2 such that every element of E(C) intersects V1

and V2.

Proof of Theorem 6.1: Let B = b(C), and let �C (resp. �B) denote the core of C (resp. B).

Let i 2 V (C). Moreover, let L1; : : : ; Lr be the edges in E( �C) that contain i. Finally, for

j = 1; : : : ; r, let Uj be the mate of Lj . Then, by Remark 5.2 (iv), Uj \ U` � fig if j 6= `

and, by Theorem 5.1 (iii), exactly two Uj 's, say U1 and U2, contain fig, since rs = n + 1.

Let Ic =
Sr

j=3 Uj and H = fS 2 E(C) : i 2 Sg � fL1; L2g. We de�ne D0 = ( �C �H)=Ic.

Claim 1. Sets in E(D0) have cardinality 2.

Proof of Claim: Let L be any set in E( �C�H). We want to show that jL�[r
j=3Uj j = 2. Since

the complement of [r
j=3Uj is U1 [ U2, this is equivalent to show that jL \ (U1 [ U2)j = 2.

Suppose i 62 L. Then L is not a mate of U1 or U2. Thus jL \ U1j = jL \ U2j = 1.

Since U1 \ U2 � fig we have jL \ (U1 [ U2)j = 2. Now suppose i 2 L. By de�nition

of H , L = L1 or L = L2. Without loss of generality we can assume L = L1. Now

jL1 \ (U1 [U2)j = j(L1\U1)[ (L1\U2)j = j(L1\U1)[ figj = jL1\U1j = 2, where the last

equality follows from the fact that L1 is the mate of U1. 3

Claim 2. There is no set T such that jT \ Lj = 1; 8L 2 E( �C).

Proof of Claim: By Theorem 5.1 (iii), for any j 2 V (C) there are sets S
j
1; : : : ; S

j
s 2 E( �C)

that intersect only in j. Moreover,
Ss

i=1 S
j
i = V ( �C) and exactly rs � n = 2 of those sets,

say Sj
1; S

j
2 contain j. By choosing j 2 T we obtain that T � fjg does not intersect Sj

1 [ S
j
2

and that T � fjg intersects each Sj
3 : : :S

j
s at most once. Hence jT j � s � 1. By choosing

j 62 T , we have jT j � s since T intersects the sets Sj
1; : : : ; S

j
s, a contradiction. 3

Claim 3. D0 is not bicolorable.

Proof of Claim: Suppose that D0 is bicolorable. Let T; T 0 be the corresponding partition of

V (D0). Without loss of generality we can assume that i 2 T . Let L be any set of E( �C).

We will show that jT \Lj = 1 thereby contradicting Claim 2. Suppose L� Ic 2 E(D0). By

Claim 1, jL � Icj = 2. Since T \ (L � Ic) and T 0 \ (L� Ic) are both non empty, we must

have 1 = jT \ (L� Ic)j = jT \ Lj.
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Thus we can assume that L � Ic 62 E(D0), i.e. that i 2 L and L 6= L1; L 6= L2.

Therefore L is the mate of some set Uj with j � 3. But then, as T = T \ (U1 [ U2) and

L \ (U1 [ U2) = fig, we have L \ T = L \ (U1 [ U2) \ T = fig. 3

Claim 4. D0 contains an odd hole C2
k.

Proof of Claim: By Claim 1, all elements of E(D0) have cardinality 2. Therefore M(D0) can

be viewed as the edge-vertex incidence matrix of a graph G. Since D0 is not bicolorable G

cannot be bipartite. Therefore G has a vertex induced subgraph G0 that is a triangle or an

odd hole. In both cases G0 corresponds to an odd hole C2
k contained in D0. 3

Claim 5. Every edge in (C �H)=Ic has cardinality at least 2.

Proof of Claim: By Claim 1 it is su�cient to show that sets L 2 E(C � H) � E( �C � H)

satisfy jL \ (U1 [ U2)j � 2. Since L 62 E(H)[ E( �C) we have i 62 L. The result then follows

from the fact that (U1 � fig) \ (U2 � fig) = ;. 3

Let Id = V (D0)�V (C2
k) and let D = (C �H)=Ic n Id. By Claim 4, D0 = ( �C�H)=Ic contains

an odd hole C2
k . By Claim 5, the sets corresponding to the odd hole are in the clutter

(C � H)=Ic. Hence D satis�es item (2) in the statement of the theorem. The next claim

will show item (1).

Claim 6. i 2 V (D)

Proof of Claim: Suppose i 62 V (D). Then i 2 Id and thus, by the choice of H , we have that

D = (C �H)=Ic n Id = C=Ic n Id, i.e. D is a minor of C. But 1
2e is a fractional extreme point

of fx � 0 : A(D) � eg, a contradiction with C mni.

We are now ready to prove the main result of this section.

Proof of Theorem 1.14: Suppose C is not ideal. From Remark 1.4, we have that C is mni.

C 6= Jt since Jt is not weakly binary. Indeed the odd hole of Jt de�ned by the sets

f1; : : : ; tg; f0; 1g; f0; 2g does not have a non intersecting set. By Theorem 1.8, we must also

have rs = n + 1.

Consider D = (C � H) n Id=Ic in Theorem 6.1. Note that C n Id contains the odd hole

C2
k . Since C is weakly binary, there is a non intersecting set S of C2

k in E(C n Id). Here

S\
�
V (C2

k)[ Id
�
= ;. Since i =2 S, we have S 62 E(H) and therefore S� Ic contains an edge

of D. But since V (C) = V (C2
k) [ Ic [ Id we must have S � Ic = ;, a contradiction.
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